3.106 \(\int \frac{d+e x+f x^2+g x^3}{(a+b x^2+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=447 \[ -\frac{\left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \left (\sqrt{c} d-\sqrt{a} f\right ) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{2 a^{3/4} \sqrt [4]{c} \left (b-2 \sqrt{a} \sqrt{c}\right ) \sqrt{a+b x^2+c x^4}}+\frac{\sqrt [4]{c} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} (b d-2 a f) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{a^{3/4} \left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}}-\frac{\sqrt{c} x \sqrt{a+b x^2+c x^4} (b d-2 a f)}{a \left (b^2-4 a c\right ) \left (\sqrt{a}+\sqrt{c} x^2\right )}+\frac{x \left (c x^2 (b d-2 a f)-a b f-2 a c d+b^2 d\right )}{a \left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}}-\frac{-2 a g+x^2 (2 c e-b g)+b e}{\left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}} \]

[Out]

(x*(b^2*d - 2*a*c*d - a*b*f + c*(b*d - 2*a*f)*x^2))/(a*(b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4]) - (b*e - 2*a*g +
 (2*c*e - b*g)*x^2)/((b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4]) - (Sqrt[c]*(b*d - 2*a*f)*x*Sqrt[a + b*x^2 + c*x^4]
)/(a*(b^2 - 4*a*c)*(Sqrt[a] + Sqrt[c]*x^2)) + (c^(1/4)*(b*d - 2*a*f)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 +
 c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(a^(
3/4)*(b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4]) - ((Sqrt[c]*d - Sqrt[a]*f)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2
 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(2
*a^(3/4)*(b - 2*Sqrt[a]*Sqrt[c])*c^(1/4)*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.272621, antiderivative size = 447, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.219, Rules used = {1673, 1178, 1197, 1103, 1195, 1247, 636} \[ \frac{\sqrt [4]{c} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} (b d-2 a f) E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{a^{3/4} \left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}}-\frac{\left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \left (\sqrt{c} d-\sqrt{a} f\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{2 a^{3/4} \sqrt [4]{c} \left (b-2 \sqrt{a} \sqrt{c}\right ) \sqrt{a+b x^2+c x^4}}-\frac{\sqrt{c} x \sqrt{a+b x^2+c x^4} (b d-2 a f)}{a \left (b^2-4 a c\right ) \left (\sqrt{a}+\sqrt{c} x^2\right )}+\frac{x \left (c x^2 (b d-2 a f)-a b f-2 a c d+b^2 d\right )}{a \left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}}-\frac{-2 a g+x^2 (2 c e-b g)+b e}{\left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*x^2 + g*x^3)/(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

(x*(b^2*d - 2*a*c*d - a*b*f + c*(b*d - 2*a*f)*x^2))/(a*(b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4]) - (b*e - 2*a*g +
 (2*c*e - b*g)*x^2)/((b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4]) - (Sqrt[c]*(b*d - 2*a*f)*x*Sqrt[a + b*x^2 + c*x^4]
)/(a*(b^2 - 4*a*c)*(Sqrt[a] + Sqrt[c]*x^2)) + (c^(1/4)*(b*d - 2*a*f)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 +
 c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(a^(
3/4)*(b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4]) - ((Sqrt[c]*d - Sqrt[a]*f)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2
 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(2
*a^(3/4)*(b - 2*Sqrt[a]*Sqrt[c])*c^(1/4)*Sqrt[a + b*x^2 + c*x^4])

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1247

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 636

Int[((d_.) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-2*(b*d - 2*a*e + (2*c*
d - b*e)*x))/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] &&
NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{d+e x+f x^2+g x^3}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx &=\int \frac{d+f x^2}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx+\int \frac{x \left (e+g x^2\right )}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx\\ &=\frac{x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{a \left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}}+\frac{1}{2} \operatorname{Subst}\left (\int \frac{e+g x}{\left (a+b x+c x^2\right )^{3/2}} \, dx,x,x^2\right )-\frac{\int \frac{a (2 c d-b f)+c (b d-2 a f) x^2}{\sqrt{a+b x^2+c x^4}} \, dx}{a \left (b^2-4 a c\right )}\\ &=\frac{x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{a \left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}}-\frac{b e-2 a g+(2 c e-b g) x^2}{\left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}}+\frac{\left (\sqrt{c} (b d-2 a f)\right ) \int \frac{1-\frac{\sqrt{c} x^2}{\sqrt{a}}}{\sqrt{a+b x^2+c x^4}} \, dx}{\sqrt{a} \left (b^2-4 a c\right )}-\frac{\left (\sqrt{c} (b d-2 a f)+\sqrt{a} (2 c d-b f)\right ) \int \frac{1}{\sqrt{a+b x^2+c x^4}} \, dx}{\sqrt{a} \left (b^2-4 a c\right )}\\ &=\frac{x \left (b^2 d-2 a c d-a b f+c (b d-2 a f) x^2\right )}{a \left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}}-\frac{b e-2 a g+(2 c e-b g) x^2}{\left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}}-\frac{\sqrt{c} (b d-2 a f) x \sqrt{a+b x^2+c x^4}}{a \left (b^2-4 a c\right ) \left (\sqrt{a}+\sqrt{c} x^2\right )}+\frac{\sqrt [4]{c} (b d-2 a f) \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{a^{3/4} \left (b^2-4 a c\right ) \sqrt{a+b x^2+c x^4}}-\frac{\left (\sqrt{c} d-\sqrt{a} f\right ) \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+b x^2+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{4} \left (2-\frac{b}{\sqrt{a} \sqrt{c}}\right )\right )}{2 a^{3/4} \left (b-2 \sqrt{a} \sqrt{c}\right ) \sqrt [4]{c} \sqrt{a+b x^2+c x^4}}\\ \end{align*}

Mathematica [F]  time = 0, size = 0, normalized size = 0. \[ \text{\$Aborted} \]

Verification is Not applicable to the result.

[In]

Integrate[(d + e*x + f*x^2 + g*x^3)/(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

$Aborted

________________________________________________________________________________________

Maple [B]  time = 0.039, size = 1005, normalized size = 2.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^(3/2),x)

[Out]

-g/(c*x^4+b*x^2+a)^(1/2)*(b*x^2+2*a)/(4*a*c-b^2)+f*(-2*c*(-1/(4*a*c-b^2)*x^3-1/2*b/(4*a*c-b^2)/c*x)/((x^4+x^2*
b/c+a/c)*c)^(1/2)-1/4*b/(4*a*c-b^2)*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)/a)^(1/2)*(4-2*((-4*a*c+b^2)^(1/2)-b)/a*x^2
)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*(((-4*a*c+b^2)^
(1/2)-b)/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))+c/(4*a*c-b^2)*a*2^(1/2)/(((-4*a*c+b^2)^(1/2)-
b)/a)^(1/2)*(4-2*((-4*a*c+b^2)^(1/2)-b)/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^
(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*(((-4*a*c+b^2)^(1/2)-b)/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+
b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/2)*(((-4*a*c+b^2)^(1/2)-b)/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(
1/2))/a/c)^(1/2))))+e/(c*x^4+b*x^2+a)^(1/2)*(2*c*x^2+b)/(4*a*c-b^2)+d*(-2*c*(1/2/a*b/(4*a*c-b^2)*x^3-1/2*(2*a*
c-b^2)/a/(4*a*c-b^2)/c*x)/((x^4+x^2*b/c+a/c)*c)^(1/2)+1/4*(1/a-(2*a*c-b^2)/a/(4*a*c-b^2))*2^(1/2)/(((-4*a*c+b^
2)^(1/2)-b)/a)^(1/2)*(4-2*((-4*a*c+b^2)^(1/2)-b)/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+
b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*(((-4*a*c+b^2)^(1/2)-b)/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c
)^(1/2))-1/2*b/(4*a*c-b^2)*c*2^(1/2)/(((-4*a*c+b^2)^(1/2)-b)/a)^(1/2)*(4-2*((-4*a*c+b^2)^(1/2)-b)/a*x^2)^(1/2)
*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2
)*(((-4*a*c+b^2)^(1/2)-b)/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/2)*(((-
4*a*c+b^2)^(1/2)-b)/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{g x^{3} + f x^{2} + e x + d}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((g*x^3 + f*x^2 + e*x + d)/(c*x^4 + b*x^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + b x^{2} + a}{\left (g x^{3} + f x^{2} + e x + d\right )}}{c^{2} x^{8} + 2 \, b c x^{6} +{\left (b^{2} + 2 \, a c\right )} x^{4} + 2 \, a b x^{2} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2 + a)*(g*x^3 + f*x^2 + e*x + d)/(c^2*x^8 + 2*b*c*x^6 + (b^2 + 2*a*c)*x^4 + 2*a*b*x^
2 + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x**3+f*x**2+e*x+d)/(c*x**4+b*x**2+a)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{g x^{3} + f x^{2} + e x + d}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x^3+f*x^2+e*x+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate((g*x^3 + f*x^2 + e*x + d)/(c*x^4 + b*x^2 + a)^(3/2), x)